Neutron emission from spontaneous fission of heavy elements at FLNR

Adam Broniš, Adam Sitarčík, Pavel Jíška

Comenius University Bratislava, ČVUT Prague

Supervisor: Alexander Svirikhin

Student summer practice 2019 JINR - Flerov laboratory of nuclear reactions Dubna

July 25, 2019

What are we studying?

Spontaneous fission of heavy elements

How the data were obtained?

Experimental background - SHELLS velocity separator + $^3\mathrm{He}$ neutron detectors

What did we obtained?

Results - Neutron multiplicities

Introduction - Production of heavy elements

Heavy elements are produced via fusion-evaporation reactions.

Formation

of compound nucleus (*CN*) from colliding nuclei.

Evaporation of nucleons/ α

from compound nucleus \rightarrow evaporation residues (ER).

Nucleon-nucleon interactions

lead to thermal equilibrium.

Deexcitation of ERs

Emission of γ rays.

Spontaneous fission

is a radioactive decay in heavy elements when mother nucleus is divided into two lighter fragments. Usually accompanied by the neutron emission.

G. Flerov and Petrzhak

discovered spontaneous fission of uranium in 1940.

Half-life of spontaneous fission

in heavy elements strongly depends on the magic numbers.

Our goal is to measure neutron multiplicities for ^{248}Cm

Experimental background - velocity separator SHELS

SHELS - Separator for Heavy ELements Spectroscopy

different kinematic properties \implies separation of projectiles from reaction products. $F_B = F_{el} \Rightarrow -qv_0B = qE \Rightarrow v_0 = E/B$

Experimental background - velocity separator SHELS

SHELS - Separator for Heavy ELements Spectroscopy

different kinematic properties \implies separation of projectiles from reaction products. $F_B = F_{el} \Rightarrow -qv_0B = qE \Rightarrow v_0 = E/B$

Position sensitive silicon detector (PSSD) inside neutron detector

Detector system - 3 main parts:

1. Time of flight - TOF system 2. PSSD detector (fission fragments, α -particles, conversion electrons) 3. ³He detectors

Adam Broniš - Comenius University Bratislava, Adam Sitarčík - C Neutron

But how to detect (spontaneous fission) neutrons?

But how to detect (spontaneous fission) neutrons?

Data aquisition

- All neutrons are registered by neutron detectors.
- Fission fragment signal from DSSD is opening $128 \,\mu s$ window.
- Signals from neutrons in DSSD window are saved in form neutron time + time from the beginning of the window.
- Time differences between the beginning of the DSSD window and neutron registration are important to discrimate them from background.

Results - neutron multiplicities of ^{248}Cm

Comparison with reference SF data $^{248}\mathrm{Cm}$ where $\bar{\nu}$ =3.14

Binomial distributions are similar, but experimental distribution is moved to the left.

Reason of this shift \implies neutron detection efficiency!

Adam Broniš - Comenius University Bratislava, Adam Sitarčík - C

Results - neutron detection efficiency

 $< n >= \bar{\nu} \times Eff = \sum N_i / \sum_{i=0} N_i$ where < n > is average number of neutron detected ($\approx 1.45 / SF$). However detection efficiency can be obtained also without the real average multiplicity $\bar{\nu}$ using number of events with *i* neutron detected and P_n - nth neutron emission probabilities (Sokol et al., NIM A 400, (1997)).

Multiplicity	Events / N _i	Ratio	Value	Efficiency	
0	593	N_1/N_2	1.2119	46.94%	
1	1184	N_1/N_3	3.0515	45.29%	
2	977	N_2/N_3	2.5180	43.77%	
3	388	N_{3}/N_{4}	4.7317	43.19%	
4	82	N_2/N_4	11.9146	43.49%	
5	18				
6	1				

Average neutron detector efficiency is 44.53%

Adam Broniš - Comenius University Bratislava, Adam Sitarčík - C

Conclusion

 Connection of 54 ³He detectors not so easy ⇒

 We obtained multiplicity distribution of emmited neutrons.

• Efficiency of neutron detection system \approx 45±2 %.

Thank you for your attention!